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A “Hamilton-Jacobi” level set formulation of the equations of 
motion for propagating interfaces has been introduced recently by 
Osher and Sethian. This formulation allows fronts to self-intersect, 
develop singularities, and change topology. The numerical algorithms 
based on this approach handle topological merging and breaking 
naturally, work in any number of space dimensions, and do not require 
that the moving front be written as a function. Instead, the moving front 
is embedded as a particular level set in a fixed domain partial differential 
equation. Numerical techniques borrowed from hyperbolic conserva- 
tion laws are then used to accurately capture the complicated surface 
motion that satisfies the global entropy condition for propagating fronts 
given by Sethian. In this paper, we analyze the coupling of this level set 
formulation to a system of conservation laws for compressible gas 
dynamics. We study both conservative and non-conservative differ- 
encing of the level set function and compare the two approaches. To 
illustrate the capability of the method, we study the compressible 
Rayleigh-Taylor and Kelvin-Helmholtz instabilities for air-air and 
air-helium boundaries. We perform numerical convergence studies of 
the method over a range of parameters and analyze the accuracy of this 
approach applied to these problems. 0 1992 Academic Press, Inc. 

A variety of physical phenomena involve propagating 
interfaces. The interface (or interfaces) separate regions 
which may differ according to their density, viscosity, or 
chemical type. The complexity of the motion of the interface 
can range from the particularly simple case of passive advec- 
tion of two different colors, to problems in flame propaga- 
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tion and dendrite solidification, in which there is an intricate 
feedback mechanism between the local properties of the 
front and the physics on either side of it. 

Recently, a new set of algorithms for following propa- 
gating interfaces has been developed. In [47], a Hamilton- 
Jacobi level set formulation for moving interfaces was intro- 
duced. These algorithms handle topological merging and 
breaking naturally, work in any number of space dimen- 
sions, and do not require that the moving front be written 
as a function. Instead, the moving front is embedded as a 
particular level set in a fixed domain partial differential 
equation. Numerical techniques borrowed from hyperbolic 
conservation laws are then used to accurately calculate the 
correct solution which satisfies the global entropy condition 
for propagating fronts given in [60]. 

These schemes have been used to model a variety of 
problems in front motion, flame propagation, and the 
geometry of moving surfaces, see [47, 60,611. Following 
the introduction of this level set formulation for moving 
fronts, it has also been used for theoretical analysis of 
motion by mean curvature in [9, 181 and for constructing 
minimal surfaces [ 591. 

In this paper, we analyze the coupling of this level set for- 
mulation to a system of conservation laws for compressible 
gas dynamics. We consider two different approaches. In one 
approach, the level set function is solved in non-conser- 
vative form, using the velocity obtained from conservative 
differencing of the standard hyperbolic system. In another 
approach, we directly incorporate the level set formulation 
into a system of five conservation laws, in which the moving 
front becomes one extra variable in the flow solver. In both 
the conservative and non-conservative settings, we also 
analyze a degenerate initialization of our level set approach, 
known as the color function. We then compare the various 
approaches and discuss how the physics of the problem 
suggest the appropriate approach. 
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As application, we study the compressible Rayleigh- 
Taylor and Kelvin-Helmholtz instabilities for air-air and 
air-helium boundaries. We compute the position of the 
moving interface, showing the development of plumes and 
rolls in the Rayleigh-Taylor instability and the rolling up of 
vortex structures in the Kelvin-Helmholtz instability. We 
perform numerical convergence studies of the method over 
a range of parameters and analyze the accuracy of this 
approach applied to these problems. 

I. PHYSICAL PROBLEMS 

In this section, we discuss the two physical problems 
under investigation. 

A. Physical Problems 

The Rayleigh-Taylor instability occurs when a light fluid 
pushes a heavier one. Imagine a horizontal interface, in 
which a fluid with density pi lies above a fluid with density 
pZ. Here we assume that gravity is pointing downwards. If 
pi < p2, the interface is stable and the two fluids remain 
motionless. Small perturbations in the initial shape of the 
interface remain bounded. On the other hand, if pi > pZ, the 
interface is unstable. Small perturbations in the initial shape 
grow as the heavier fluid on the top pushes through these 
perturbations and long fingers of the heavier fluid reach 
down into the lighter fluid. At the same time, plumes of the 
lighter fluid grow upward. The initial growth rate of the 
perturbations is exponential. Experimental observations 
indicate that the heavier fluid forms long “spikes” as it 
reaches into the lighter fluid, while the rising light fluid 
forms rounded tops, or “bubbles.” The length of the inter- 
face increases dramatically and can break into several parts, 
developing bubbles. Some examples where this instability 
can occur are in the collapse of a massive star, the laser 
implosion of deuterium-tritium fusion targets, and the elec- 
tromagnetic implosion of a metal liner. One of the most 
straightforward examples is the novelty-store toy in which 
fluids of differing densities are trapped between two glass 
plates. By upending the apparatus, the lighter fluid rises to 
the top by forming long spikes in the interface. Bubbles can 
break off from the interface and later merge with other 
bubbles. The interface between the two fluids becomes 
highly complex, breaking into numerous different parts with 
wildly varying shapes. 

In their most complicated form, the equations of motion 
are the equations of full viscous, compressible flow plus 
interface effects. Some important factors controlling the 
growth of instability are: (1) the density ratio, which 
governs the growth of small amplitude perturbation; (2) 
surface tension, which stabiizes wavelengths shorter than a 
critical wavelength; (3) the viscosity, which reduces growth 
rate and regularizes the flow; (4) compressibility, which 

reduces growth rate; and (5) heterogeneity, which can excite 
instabilities of various wavelengths. 

The Kelvin~Helmholtz instability occurs when one fluid 
is moving at a different rate relative to another. Imagine one 
fluid atop another, moving at different speeds initially 
parallel to the interface. The initial horizontal interface rolls 
up into large vertical structures, which serve to entrap the 
fluid. In compressible gas flow, the Kelvin-Helmholtz 
instability can be seen when a jet of fluid is injected into 
another, producing large vertical structures which roll up 
the interface between the two fluids. Another example is 
provided by parallel shear flow for incompressible fluids, 
which can be modeled through the study of vortex sheets. 
Here, the vorticity is zero everywhere except along an 
infinitely thin line or curve. A good example is flow around 
the trailing edge of a wing, which forms a vortex sheet whose 
strength depends on the given wing design. The ensuing 
motion and rollup of the vortex sheet affects both the drag 
on the wing and the flight of following aircraft. 

For some experimental studies of these phenomena, we 
refer the interested reader to [12, 16, 28, 29, 37, 38, 51, 53, 
551. In addition, we draw the reader’s attention to the 
recent experiment on the three-dimensional Rayleigh- 
Taylor instabilities described in [29]. This paper contains 
some fascinating photographs of three-dimensional 
instabilities in circular tubes and direct comparison with 
solutions from linear and non-linear theory developed in 
[28]. For studies of the theoretical aspects of Rayleigh- 
Taylor and Kelvin-Helmholtz instabilities, a possible 
starting point may be found in [4, 5, 6, 8, 20, 27, 34, 40, 41, 
44, 45, 50, 54, 56, 58, 651. 

B. Numerical Studies 

Two different types of numerical methods are often 
employed for computing interface problems in fluid 
mechanics. The first, or “Eulerian” type, compute the full 
NavierrStokes equations in both fluids. In these techniques, 
the finite difference approximations are typically employed 
across the entire domain. The second, or “Lagrangian” type, 
reduce the equations of motion to equations for the inter- 
face itself. Here, one ofter uses markers to track the inter- 
face. One example in this category are vortex methods, 
which rely on a discrete approximation to a boundary 
integral along the interface, see [3, 11, 18, 3&33, 40, 
52,651. An excellent overview of some work on the 
Rayleigh-Taylor instability is due to Sharp [62]. Other 
calculations include [I, 2, 15, 19, 26, 42, 43, 46, 691. Some 
particularly beautiful calculations of compressible jets may 
be found in [7, 681. 

Hybrid “Eulerlian-Lagrange” methods have also been 
employed. These methods are used in some of the earliest 
numerical calculations of the Rayleigh-Taylor instability, 
which were performed by Harlow and Welch [23]. In these 
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calculations, the marker-and-cell method was introduced, 
in which a finite difference scheme is used to solve the full 
Navier-Stokes equations. One of the two fluids, say Type 1, 
is tracked by placing marker points at the centers of cells 
initially containing the chosen fluid. These markers are then 
advected with the computed fluid velocity. At subsequent 
times, cells are divided into three types: (a) those containing 
marker particles and whose neighboring cells contain 
marker particles (Type 1 fluid); (b) those not containing 
marker particles and whose neighboring cells also do not 
contain marker particles (Type 2 fluid); and (c) surface cells 
which must contain the boundary. Using this technique, a 
moving fluid interface was tracked. An extension of this 
technique was used in [ 141 to track the growth of a single 
mode of the Rayleigh-Taylor instability, showing the 
development of a large bubble and accompanying spike. 

The most involved calculations using a combination 
EulerianLagrangian scheme which couples the Navier- 
Stokes equations to a method for tracking fronts is the front 
tracking technology due to Glimm et al. [21, 221. In this 
work, the compressible NavierStokes equations are solved 
in the whole domain, and the interface is tracked through a 
set of marker particles on the moving interface. A variety 
of calculations of bubble and spike development for the 
Rayleigh-Taylor problem may be found in [21, 22, 631. 
Another method for following moving interfaces is given 
in [36]. 

II. EQUATIONS OF MOTION FOR 
PROPAGATING INTERFACES 

A. Statement of Problem 

In the most general form, consider a propagating hyper- 
surface s(t) (that is, a curve in two space dimensions or a 
surface in three space dimensions) separating two regions in 
the domain. Here, t is time, and S(t): [0, cc ) + RN, N = 2, 3. 
Suppose that S(t) propagates normal to itself with speed F. 
F may vary along the interface S(t) and depend on such 
factors as the position of the front S(t), the direction of the 
normal n(t), the local curvature K(t), as well as the time t. 
Note that the dependence of F on the position s(t) can 
generate tremendous complexity, since the physics on both 
sides of the interface may enter into the determination of F. 
Our goal is a numerical algorithm that follows the motion 
of S(t). 

It might seem most natural to formulate equations of 
motion by parameterizing the hypersurface and describing 
the evolution of the interface in terms of coordinate-free 
“Lagrangian” front properties, such as the local normal n 
and curvature K. Indeed, a standard numerical method for 
tracking moving fronts relys on discretizing such a 
parameterization with marker particles whose motion is 
determined by a discrete approximation to the appropriate 

equations of motion, see [70]. As shown in [60,61], such 
techniques can encounter considerable difficulties when 
sharp corners develop in the propagating interfaces or when 
the interface changes topology. A rigorous explanation of 
the inherent instability of this approach is given in the 
appendix of [47]. Instead, we consider an “Eulerian” 
formulation of the equations of motion which is more 
amenable to numerical approximation. The details of this 
formulation were first presented in [47]. 

B. Eulerian Formulation 

Given a closed hypersurface f(t), we wish to produce an 
Eulerian formulation for the motion of the hypersurface 
propagating along its normal direction with speed F. We 
motivate the Eulerian formulation by a simple example, 
taken from [61]. 

Let f(t) be a unit circle in R* propagating outward with 
constant speed F- 1. Obviously, the solution at any time t 
is just a circle with radius (t + 1). Rather than describe the 
motion of this circle, we consider the motion of a surface 
z = $(x, y, t) in R3. The level set $ = 0 of this surface is just 
the set of points in the ,x-y plane corresponding to the 
propagating curve r(t). That is, 

I-(t) = ((4 Y) I $(x7 4’3 t) = 0). (2.1) 

Thus, we have matched the motion of the front f(t) in R* 
with the evolution of a function z = $(.u, y, t) in R3. At this 
point, we must describe how to 

(1) Construct the initial value $(x, y, 0) 

(2) Derive the equations of motion for the evolving 
surface. 

We shall do this in some generality, referring to an 
(N - 1 )-dimensional hypersurface with arbitrary speed 
function F. 

C. Construction of the Initial Value for $ 

Suppose we are given a closed, propagating (N- l)- 
dimensional hypersurface f(t), where f(t): [0, co) + RN. 
A straightforward technique for constructing the initial 
front $(X, t = 0), where .% E RN, is to let 

l&z, t=O)= +d, (2.2) 

where d is the distance from X to Z( t = 0), and the plus 
(minus) sign is chosen if the point X is outside (inside) the 
initial hypersurface f(t = 0). Thus, we have an initial 
function $(,U, t = 0): RN + R with the property that 

I-(t=O)=(xI$(x, t=O)=O). 
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Our goal is to now produce an equation for the evolving 
function $(X, t) which contains the embedded motion of 
f(t) as the level set $ = 0. 

D. Derivation of the Evolution Equation for II/ 

We are given a propagating hypersurface r(t) and a 
speed function F at each point of the propagating hyper- 
surface. Let Z(t), t E [0, co), be the path of a point on the 
propagating front. That is, X( t = 0) is a point on the initial 
front r(t = 0), and IX, 1 = F(X( t)) and the vector X, is in the 
direction normal to the front at Z(t). Since the evolving 
function Ic/ is always zero on the propagating hypersurface, 
we must have 

l+@(t), t) = 0. (2.3) 

By the chain rule, 

where x, is the ith component of X. Let (ur , uZ, . . . . u,) = 
(x,,, x2,, . . . . xN,). Since 

hypersurface r(t) may change topology, break, merge, and 
form sharp corners as the function $ evolves. As an 
example, consider two circles in R2 expanding outward. The 
initial function $(X, t =0) is a double-humped function 
which is Lipshitz continuous, but not everywhere differen- 
tiable. As this function evolves according to Eqs. (2.7)-(2.8) 
the topology of the level set II/ = 0, corresponding to the 
propagating hypersurface r(t), can change. For example, as 
the two circles expand, they meet and merge into a single 
closed curve with two corners. This is reflected in the change 
of topology of the level set I+$ = 0 in the propagating 
function. 

The second major advantage of this Eulerian formulation 
concerns numerical approximation. Because $(X, t) remains 
a function as it evolves, we may use a discrete grid in the 
domain of X and substitute finite difference approximations 
for the spatial and temporal derivatives. 

Finally, the Eulerian Hamilton-Jacobi formulation 
extends in an obvious way to moving surfaces in three space 
dimensions. All of the numerical methodology described 
below is easily generalized, with none of the complicated 
bookkeeping that plagues marker particle technology and 
volume of fluid methods. 

F. Extension of F Off te Level Surface II/ = 0 

i= I 
As mentioned earlier, F may depend on such factors as 

(u, 3 u2, .--, UN) = FMt)) WI, (2.5) 
the position of the front and the local curvature. We point 
out a somewhat subtle issue that results from our Eulerian 
formulation. We have formed an extension of F off the 

we then have the evolution equation for $, namely, propagating hypersurface to all of space. That is, the equa- 
tion 

II/,+FIV$I=O. (2.6) 

We refer to this as a Hamilton-Jacobi “type” equation 
$t+J'IWI =O 

because, for speed function Fidentically constant, we obtain 
a standard Hamilton-Jacobi equation. applies to each level set II/ = C, and thus we have implicitly 

To repeat, the position of the propagating hypersurface assumed that is a function in RN x [0, co):F(X, t) such that 

r(t) is given as the level set 
F(X, t) = F(T(t)) for (X, t) E r(t). 

r(t) = (XI $(X, I) = O), (2.7) 

where $(X, t) is the solution to the Hamilton-Jacobi-type 
How does one extend F off the propagating hypersurface 

equation 
r(t) to the entire domain? In previous work (see [47,61 I), 
the function F depended on the local curvature of the 

$,+FIWI =O 
propagating level set $ = 0. In this case, since the local 

(2.8) 
curvature could be calculated for the entire family of level 

$(X, t = 0) = f distance r( t = 0). sets covering the domain, it is straightforward to extend F 
by using the value of the curvature at a point X in the 

E. Advantages to the Eulerian Formulation 
domain determined by the particular level set passing 
through that point. 

There are three major advantages to this Eulerian In the Rayleigh-Taylor and Kelvin-Helmholtz problems 
Hamilton-Jacobi formulation. First, the evolving function considered here, the level set (I/ =0 is carried by the 
$(X, t) always remains a function for reasonable F. underlying fluid advection, and thus the speed function F 
However, the level surface t+G = 0, and hence the propagating depends only on the position of the level set $ = 0. Thus, we 



INTERFACE MOTION IN COMPRESSIBLE GAS DYNAMICS 213 

may quite naturally extend the speed F to the entire domain 
by moving each level set by the underlying fluid. 

In more complicated cases, the speed function can depend 
on such factors as the local normal, boundary integrals 
along the level set $ = 0 and other factors. In such cases, the 
extension of F off the propagating hypersurface to the entire 
domain is not straightforward. The most complicated inter- 
face motion studied to date using this Hamilton-Jacobi 
approach is dendritic solidification, see [62]. In that work, 
the motion of the front and extension of F requires the 
global evaluation of a time history-dependent boundary 
integral along the boundary. For details, see [62]. 

III. COMPRESSIBLE FLOW AND 
PROPAGATING INTERFACES 

In this section, we discuss how to couple the level set 
formulation for a propagating interface to a system of 
conservation laws. To begin, consider the system of 
equations which describe compressible flow, namely, 

where the vector 4 is defined by 

(3.2) 

Here, p = p(x, y, t) is the density, u = u(x, y, t) is the 
velocity in the x direction, u = u(x, y, t) is the velocity in the 
4’ direction, and E = E(X, y, t) is the specific energy of 
the system. The flux functions P(q) and c;(q) are given by 

WI )= pu2+P 

i I puo ’ 
wi) = 

pus + UP 

/ \ PU 

(3.3) 

The forcing function R(q) depends on the particular 
problem under study. For the Rayleigh-Taylor problem, 
we assume that gravity g is pointing up (the positive y 
direction), and thus we have 

0 

R(q)= O 

i\ P&T 

\ PWl 

(3.4) 

For the Kelvin-Helmholtz problem, we assume that 

0 

R(ij)= ; . 0 0 

Finally, we use the equation of state to link the pressure P 
and the density, namely, 

P= (y- 1) p(&- 1/2(u2+2?)), (3.6) 

where here we have used the typical y-gas law. A more com- 
plete gas law would add only technical and not conceptual 
difficulties to the numerical method described below. 

Our goal now is to incorporate interface motion in this 
setting. Let Q, and Sz, be two regions in R2 separated by a 
curve r(t = 0) which is a small perturbation of a horizon- 
tally straight line. Suppose Q, is above Q,, and that the den- 
sity in Q, is less than that in Q,. The system of conservation 
laws described above apply in both 52, and Q,, with 
possibly different y-law equations of state. Suppose the loca- 
tion of the propagating interface r(t) is given by the level set 
$(x, y, t) = 0. Then the full motion of the two regions can be 
viewed as a single system of conservation laws, which may 
be solved by appropriate finite difference approximations. 
What remains is to couple the equations of motion for II/ to 
the system given in Eq. (3.1). 

A. Non-conservative Differencing for $I 

For Eq. (2.4), we have 

$I+ 4x + 4y = 0, (3.7) 

where u=ui, v=u2, and rj is the evolving function 
$(x, y, t) such that 

T(t) = ((x, y) I Ii/(x, y, t) = 0). (3.8) 

Then one approach is to solve Eq. (3.7), which is in non- 
conservative form, using the velocities (u, u) obtained from 
the hyperbolic system given in Eq. (3.1). 

B. Conservative Differencing for I,+ 

Alternatively, we may put the equation of motion for the 
evolving function II/ in conservation form. We have 

(PlcIL + (PUti), + (POti), 

= CPt + (PU), + (PU),l$ + PC$, + @x + u$,l 
=o+o=o. (3.9) 
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For piecewise continuous II/, the Rankine-Hugoniot jump “?,’ in Eq. (3.15). In Section 5 we derive the appropriate 
conditions for this equation are the same as for the conser- condition at $ = 0 and its numerical implementation. 
vation of mass equation (Eq. (3.1)). Thus, we may write a We point out here that the extra work in computing the 
single system of conservation laws for the motion of the fluid front is rather small. To solve the fundamental system of 
in each-region and the level set function II/, namely, equations involves the use of a good numerical approxima- 

tion to the system of conservation laws in two space dimen- 
(3.10) sions. Computing the interface motion via the level set 

function requires either adding one more unknown to the 
system, namely (pll/), in a way that preserves the hyperbolic 
conservation law structure, or solving a coupled equation in 
non-conservative form. In either case, the same finite 
difference grid lattice is used and requires only one more 

qt + CUs)lx + CWs)l, = H(q), 

where 

P PU 4= PV 
i) PE 

Plcl 

Kelvin-Helmholtz. 

(3.11) 
array in the above data structures. 

IV. SOLVING HYPERBOLIC SYSTEMS 

A. General Outline 

In this section, we lay the groundwork for our numerical 
(3.12) methods. The field of hyperbolic solvers has grown rapidly 

in the past ten years, and good overviews of the material 
may be found in the review articles [49, 571 and the referen- 
ces therein. Here, we give a brief flavor of the basic idea for 
those unfamiliar with the field. 

The basic idea behind these methods is as follows. 
Consider, as a simple example, the n component linear 
hyperbolic system in one space variable, namely 

(3.13) 
u, + Ca(u)L = 0. (4.1) 

Performing the differentiation, we then have 

u -u +Au -0 li- I x- 3 (4.2) 

where A = [da/iJu] is the (constant) m xm Jacobian 
All that remains is to formulate the equation of state. matrix. Suppose T diagonalizes A. Then 

We define the pressure P by 
TAT-‘=A, (4.3) 

p= (Y(ll/)- 1) PC&- 1/2(u2+v2)), (3.14) 
where A is diagonal. Then if we define the vector 

where 
ii=Tu, (4.4) 

(3.1 5, we can premultiply Eq. (4.2) by T and postmultiply by T ~ ’ 
to obtain the decoupled diagonal system 

Away from $ = 0, this is a conventional hyperbolic ii, + Ati, = 0. (4.5) 
system of conservation laws with the standard propagation 
velocities of gas dynamics, and a triple linear degeneracy Consider now the ith component of the above diagonal 
corresponding to the particle velocity. At $ = 0, the fluxes system, namely 
are discontinuous, and it is not obvious what the correct 
conditions should be: this is reflected in the question mark (&Jr + n,(h), = 0. (4.6) 
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We may solve this equation exactly, since nk is a constant, For simplicity of exposition we compute the one-space- 
and retrieve the solution u by letting dimensional Jacobian, where we set u = 0 and neglect the pv 

u=T-%. 
equation in (Eqs. (3.10))( 3.11)). We note that y is a function 

(4.6) of Yfor our problem and a function of $ for the two-compo- 

The strategy behind numerical algorithms for more 
nent problem. Using conserved variables, we may view 

general non-linear hyperbolic conservation laws is a time 
and space discretization of a non-linear version of the above 

y=y @I 
( 1 

(two component gases) (4.9) 
P 

process. Consider a lattice of points xi = ih, i = . . - 3, - 2, 
- 1, 0, 1, 2, 3, and the general system of the form or 

u + aa(u) U -u +Ai=O 
y=y @ (level set, immiscible problem). (4.10) 

, L 1 r x-1 \ 3 (4.7) ( > P 

We let 4 denote either Y or II/ for the two problems and 

where now A(u) is nonlinear. Let uy denote the approximate obtain the Jacobian as in [35] 

solution at time n At at point xi. In order to go from the 
solution at time n At to the solution at time (n + 1) At, at 0 1 0 0 

each point xi we compute the eigenvectors of the Jacobian 
matrix A(u) to construct the diagonalizing matrices T and i?F 

u*-qw (3-“r)u (Y-1) x 

T-‘. The matrices A and T, T pi are functions of u. Their 
values at an intermediate state between ui and ui+, , denoted 

a4 

-=1 

Y-1 
(3 2 

U3-uH-ucjX H-(y-l) 242 yu 

as ui+ 112 at Xi+ 112, are approximated in Section 5 and used 
in the numerical procedure to update u as follows: At each -4 d 0 

point x,, 1,2, we‘ have a local ‘Riemann problem, which 
assumes a constant left initial state and a constant right 
initial state. Imagine then, that at each point xi+ I,* at time 
IZ At, we consider the local Riemann problem which has 
initial state II:,‘;;, on the right and u,-,‘~~, on the left (we 
postpone until later the calculation of these intermediate 
mesh values). Using approximate Riemann solvers, we solve 
this initial value problem for time step At, where At is 
chosen small enough that waves traveling from neighboring 
Riemann problems do not interact. The matrices A(u) and 
T(u) play a key role in the approximate solutions to the 
Riemann problem. Details of these ideas may be found 
in [49, 571. 

B. The Equations of Motion for Gas Flow and Interface 
Motion 

Following the above outline, the first task is to compute 
the eigenvalues and eigenvectors of A, which is the Jacobian 
matrix of F(q). There is a similarity between our set of live 
conservation laws (Eqs. (3.10)-(3.11)) and the equations of 
two-component inviscid gas flow studied by [35]. In those 
equations, the level set function $ is replaced by the mass 
fraction Y of species one. In addition, the quantity y defined 
in Eq. (3.15) is no longer a piecewise constant function of $, 
but instead, for the two-component mixture case, is given by 
(see C351) 

Here, the enthalpy His defined by 

and 

H=PE+p 
P 

&y= p y -- 
Y-lP’ 

The eigenvalues of A are 

A,=u-c, I,=u=A,, 

where 

c=&G. 

A set of right eigenvectors is 

1, = u + c, 

YC”,Y, + Cl- Y) COZY2 

y= Yc,,+(l- Y)Cr* ’ (4.8) 

where c,, is the specific heat at constant volume of species i. 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 
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For our definition of r($), $X= 0, and 

X= $-$wN’*-“1. (4.18) 

Obviously, 6( II/ - 0) must be approximated numerically. 
We shall describe this in the next section. 

C. Approximate Riemann Solvers 

We must now solve the Riemann problem that occurs in 
the decoupled diagonalized system. We use second-order 
TVD schemes, which can be based on either the true solu- 
tion to the Riemann problem (Godunov’s scheme), or, more 
likely, an approximate Riemann solver, e.g., Roe’s [57], 
Osher’s [49], or van Leer’s [67]. 

For our problem, the simplest scheme is van Leer’s, since 
it is based on a flux splitting 

f”L(qLY QR) =f+(qL) +f-(cd* (4.19) 

The eigenvalues of af+/aq (af-/aq) are all nonnegative 
(nonpositive). Each typically has one zero and two non- 
zero eigenvalues. However, there is no “switching” across 
the point u = 0, thus the scheme is relatively viscous near 
stagnation points. This will be important in the solution of 
the Rayleigh-Taylor and Kelvin-Helmholtz problems. 

For Osher’s scheme 

“LCSL~ IQ) =; Cf(sL) +f(sdl 

(4.20) 

with 
where the integral is taken along successive paths parallel to 
the right eigenvectors of af/aq. 

The construction here is simplified by requiring that the 
Riemann invariants be constant along each path. This leads 
to a single equation for a single unknown for an intersection 
point. It can be shown that Newton’s method globally 
converges for this (details elsewhere). 

Roe’s scheme can be written as 

The matrix A defined by the above is then diagonalizable: 
its eigenvalues are B - t, li, ti + C, where t2 = (y^ - 1) 
(fi- C2/2), and its eigenvectors are given by expressions 
which are analogous to Eqs. (4.16)-(4.17). This expression 
has an analogue in our immiscible case. We describe this 
and our numerical method in the next section. 

V. APPROXIMATION TO EQUATIONS OF MOTION 

.hIL? $4 = i Cf(sL) +f(sdl 

-tlLI (qR-qA (4.21) 

where A LR = A(q,, qR) is a matrix satisfying 

f(qL) -f(qd = A,,(q, -cd (4.22) 

It turns out that for y law gas dynamics, A,, can be chosen 
to be the Jacobian matrix evaluated at some intermediate 
state qLR known as the “Roe average of qL, qR.” This cannot .~~. _. ~~ 

The system is discretized in space by a second-order TVD 
(or ENO) scheme and in time by a two-stage TVD 
Runge-Kutta scheme which is second-order accurate in 
time. We follow the approach described in [64] and stop at 
the second-order accurate level. 

MULDER. OSHER, AND SETHIAN 

be done for the system here. However, in [35] a Roe matrix 
for two-component flow was constructed which is very close 
to the Jacobian at the Roe average. The expression is 

(4.23) 

where the averaged state q = (8, 81;, i?, jl P)’ is defined by 

(4.24) 

- 
t;"ULJPL+URJPR 

JFL+Vb-R 
(4.25) 

A=H~,j;JI+H~& 
JL+& 

(4.26) 

(4.27) 

where y^ = y(Q) and 

iJ= c”,c&J-Y2)~ 

f&+(1-P)C”, 
(4.28) 

T=T~&+L& 
Y/x+JL . 

(4.29) 
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Briefly, we set up a semi-discrete method of lines 
approximation to the system written as 

The TVD operator L(q) approximates t(q) to second 
order, 

L(4) = L(q) + aA*) (5.2) 

for smooth q, where h is the maximum mesh size. The Euler 
forward version 

-$ti 

1 0 
(3-f@ -(r”- 1)8 

ti ti 
A-(p-l)zP -(y^-1)&j pti 

6 0 

Q n+‘=qn+dtL(qn) (5.3) The averaged states are defined by 

is assumed to be total variation stable for 
a=&\l;;lj (5.10) 

AtG$max((uI/Ax+ ~v~/Ay+c~l/Ax2+ l/Ay’)-’ (5.4) (5.11) 

(a discussion of this criterion appears in [64] and some of 
JPL+JPR 

the references described therein). with B, fi, and 4 defined in the same way as li. The condition 
A second-order TVD RungeeKutta time discretization is that remains is 

just Heun’s method, 

q* = q” + At L[q”] 

Q “+‘=;(q”+q*)+~L[q*, 

g=(PR-PL)-(V;--I)CPR/(YR-l)-PL:(YL-l)J 

(5.5) 
p($R-Ic/L) 

(5.12) 

Note that d = $‘/g = p(q- l)(Z?-- 1/2(li2 + 02))/g. Let 
which is stable under the same CFL condition as the Euler Aa=a,-a, for some quantity a, and define a, by 
forward version. a0 = ApAp All/) and aI by aI = AMY - l))l@ Ati). Then 

Next we describe the space discretization Eq. (5.11) becomes 

L(q) = L”Cql + Wsl + H(q). (5.6) 

Here, of course, L” approximates -F,, L, approximates 
-G,“, and H(q) is the exact value of H(q) at the grid point. 
The most intricate part of the discretization involves L” and 
Ly. We describe L” here; Ly is defined analogously. 

L’ will be a conservation form finite difference scheme 

where the numerical flux, 4 + ,,* is a second-order-accurate 
approximation to F(q) at the end point of a cell 

zj={xlx,~~~2dX~~~j+~~*} (5.8) 

and q(x,, P) is obtained at all time levels, for 
x, = i(x, + ,,2 +x, 1,2), the cell center. 

First we determine the Roe decomposition. The average 
Jacobian Aj + 1,2 for our system is analogous to the two 
component flow Roe matrix in [35]: 

d(y^- 1) ----=aa,(f-- 1)-al(y^- 1)‘. 
d$ 

(5.13) 

It is not possible to find a function y($) satisfying Eq. (5.13) 
with boundary conditions y( II/ L) = + L. Therefore we choose 

y(~)=(ICI-Ij/L)YR+(~R-~)::L 

GR-$L 
(5.14) 

and let f= y(G). Now the condition given in Eq. (4.22) is 
not satisfied consistently, but it can be used to compute $( II/) 
or 2 Thus, we have obtained a matrix A which is almost 
equal to A($), except for 2. The right eigenvector of a are 
the columns of 

i 

1 1 0 0 
C-C 22 0 0 

T= fi ti 1 0 
A-tit 1/2(zP+B2) B -f/(+1) Ei+liE 

4 I) 0 1 
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whereas the left eigenvectors Ik can be taken as the rows of 
T-‘. The left eigenvectors obey the relations: 

l2 = (1 - l/2(9 - l)(zP + 0*)/c’ 

+ @p’, (r^ - l);/e’, - (r^ - 1)/P, -‘Qlc’) 

f3=(-lY,o, l,O,O) 

14=(-$,o,o,o, 1) 

I’ + l5 = (1, 0, 0, 0,O) - f2 

1 l - I5 = (G/C, - l/E, 0, 0,O). 

The eigenvalues are the diagonal elements of 

(5.16) 

A = diag(ri - F, ii, ti, ii, li + E). (5.17) 

The Roe-type matrix above has terms which are almost 
infinite (that is, behave like l/Ax), because of Eq. (5.13). 
This mirrors the delta function occurring in the Jacobian 
when $ changes sign. In spite of this, no stability problems 
were found in our calculations below. 

ALGORITHM (TVD-Roe). Given the states qj= q(xj), 
where the xj are grid points, we compute the fluxes 
fi =f(q,). To determine the numerical flux J+ ,,2, we trans- 
form to characteristic (Riemann invariant-like) variables. 
We denote the left eigenvectors (computed in Eq. (5.15)), 
the right eigenvectors, and the eigenvalues of A,, 1,2 = A,, 
(see Eq. (5.15) (left state ql=qj, right state qr=qj+l) by 
I:.“+’ 1,2, rjY+l 1l2, ;I;“) 1,2, o = 1, 2, 3, 4, 5. Computation shows 
that 

;1!” Jf w = uj+ 112 - cj+ 112 (5.18) 

q’! l/2 = A;‘+’ l/2 = A)“+’ 1,2 = u,+ ,,2 (5.19) 

;1?’ t+ 112 = uj+ 112 - cj+ 112. (5.20) 

Also. 

I>? ,,2 . $2 I,2 = 6,, = 
1 if u=p 
o 

if u#p 
(5.21) 

We may decompose 

u=5 

fk = 1 r;$,, .Gp', k= j- 1, . . . . j+2, (5.22) 
v=l 

where 

(-$"'= I!"' 
I+ 112 

.fk. (5.23) 

The next step is just second-order-accurate EN0 integra- 
tion on Gt’, namely, 

G’“’ = G!“’ + l/24!“’ 
L I I 

(5.24) 

GjPU’ = G;v,’ , - 1/2~ljy 1. (5.25) 

If 
a!“’ = G(“’ _ G’“’ 

J / j- 1, 
b(“’ = ($2, _ G(“’ 

J .I ’ 
(5.26) 

then 

A(u) = 
&’ if la!“)1 <b!“‘I 

J I 
J b:“’ 

(5.27) 
J 

otherwise. 

Upwind differencing is now applied to the field 

G!“’ 
G(“) 

L 
if A!“) 

,+ l/2 = 
/ + 112 2 0 

G$’ otherwise. 
(5.28) 

Finally, we transform back by letting 

f J + 112 = 1 rj”+) ,,2 . Gj”t’ ,/2. (5.29) 
v=1 

This is a (slightly nonstandard) version of a second-order- 
accurate TVD Roe-based scheme, see [64]. As such, it is 
known to admit stationary expansion shocks. An entropy 
fix due to Harten [24] is obtained through 

Gj+ 112 = 1/2[GI”‘+ Gk”‘- g(l!“’ J+ ,,,W$’ - GI”‘)l, (5.30) 

where 

(sign(x) if 1x1 >.z, 
x2+&; 

g(x) = 2X&, 
if &_f< 1x1 <E/ (5.31) 

E; + E; 

2&; 
if 1x1 <E:. 

We choose E/= O.lc,+ ,,*. This entropy fix suppresses 
unphysical expansion shocks and is only applied for the 
characteristic field u = 1 if (u - c),. < 0 < (u - c),, + 1 and for 
field u=5 if (u+c),<O<(ufc),+,. 

We have now created a numerical flux function in all 
cases, including those for which yi # yj+ 1, for which the 
interface lies between x/ and xt+ , (recall Eq. (5.14)). 

Finally, we consider the case for computations where the 
equation for $ is not in conservation form. The term ~rl/~ is 
approximated via 

(Ax) u$, z 24; (C$j+ 1/2(A4+)j1- C$J~I + 1/2(~$)j-,l) 

+“J- (c+J+l - l12CA$)j+ II - C$J- I/2(d$)jl ), 
(5.32a) 
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where 

u,? = max( uj, 0), 24,: = min(u,, 0), (532b) 

and 

(A$), = smaller in absolute value of 

(*,+I - $.i? *, - ti, - I 1. (5.32~) 

This differencing corresponds to a second-order-accurate, 
stable, nonoscillatory approximation to the linear Hamilton 
-Jacobi equation $I = -u(x, t) $,, where u is a given 
function, see [47]. The other term u$, is approximated 
analogously. 

The spatial discretization of the remaining four equations 
is as described above, and the time discretization is just 
Heun’s method, one again. We repeat, the extension to two 
space dimensions comes from approximations to L”(q) and 
L.“(q) separately in the one-dimensional fashion described 
in Eqs. (5.7)-(5.32) then using the Runga-Kutta time 
discretization shown in Eq. (5.5). 

VI. RESULTS 

A. Rayleigh-Taylor Instability 

The numerical experiments were performed on a rec- 
tangular domain with walls on the lower and upper sides, 
and periodic boundaries in the horizontal direction. Gravity 
acts in the upward direction. The horizontal size of the 
domain is chosen as the unit length. An initial sine perturba- 
tion has a wavelength 1 of the same size. As initial condi- 
tions, we use the solution of the linearized equations given 
in [21]. This solution refers to the air-air case. The relevant 
parameters are the initial density ratio D =pb/pu and 
M2 = g%‘/ci. The subscript a refers to the gas just above the 
interface, the subscript b to gas just below the interface. The 
sound speed just below the interface cb is set to 1, as is the 
density (cb = 1, ph = 1). The constant of gravity follows from 
M2. The adiabatic exponent y, = yb = 1.40. 

Figure 1 shows contours of $ at values of - l/32, 0, and 
l/32, for times 0, 1, . . . . 6. The grids have size 64 x 128 and 
192 x 384, respectively. Symmetry is forced: the computa- 
tions have been carried out on a grid with half the size in the 
horizontal direction. Thus, the grids used are in fact 
32 x 128 and 96 x 384, respectively. The initial density ratio 
D is 2, the amplitude of the initial perturbation is 0.015, and 
M2 = 0.5. 

In Fig. la, we see that a small sinusoidal perturbation 
grows into the expected mushroomshaped object and 
develops side rolls. However, tripling the mesh size, shown 
in Fig. lb, does not produce a refined picture. Instead, 
pronounced oscillations develop and smaller rolls appear 
on the surface of the basic structure. This suggests that the 

solution does not converge under refinement. As a test, we 
compute the relative error in $ defined by 

where the superscript h denotes the cell size of the uniform 
grid and 2h denotes the grid size after coarsening. In order 
to compare the two, we apply the restriction operator Zp to 
the solution of the line mesh and volume average to produce 
values for comparison with the coarse mesh solution. The 
initial data are represented with second-order accuracy 

TABLE Ia 

Relative Error Eih($) Measured in the 1, Norm, as a Function 
of Grid Size and Viscosity p at Times 0, 2, 4, and 6, for the 
Rayleigh-Taylor Problem 

(2/z-‘, h-’ Time p=o 5 x torn4 1 x 10-3 5 x 1om3 

32, 64 0 1.15-S 1.15-5 1.15-5 1.15-5 
2 4.03-4 3.22-4 5.13-4 3.46-4 
4 1.31-3 4.79-3 3.70-3 1.08 -3 
6 2.19-2 2.47-2 2.02-2 5.67-3 

48.96 0 5.11-6 5.11-6 5.11-6 5.11-6 
2 2.79-4 1.80-4 2.46-4 1.62-4 
4 6.40-3 3.42-3 2.27-3 5.48-4 
6 2.88-2 1.80-2 1.39-2 3.19-3 

64, 128 0 2.87-6 2.87-6 2.87-6 2.87-6 
2 2.34-4 1.21-4 1.55-4 9.71.-5 
4 5.90-3 2.58-3 1.58-3 3.46-4 
6 3.57-2 1.22-2 9.59-3 2.10-3 

96, 192 0 1.28-6 1.28-6 1.28-6 1.28-6 
2 1.71-4 6.85-5 8.04-5 5.05-5 
4 5.71-3 1.52-3 8.42-4 1.92-4 
6 6.20-2 6.64-3 5.14-3 1.16-3 

TABLE Ib 

Order of Accuracy, Estimated from the Relative Error in $ 
Measured in the I, and I, Norms, as a Function of the Viscosity 
p at Various Times, for the Rayleigh-Taylor Problem 

P Norm t=o t=2 f=4 r=6 

0 1, 2.00 1.04 0.16 -0.93 
1% 1.95 0.01 -0.41 -0.81 

5 x 10-4 1, 2.00 1.62 1.22 1.42 
1, 1.95 0.83 0.98 0.78 

1 x 10-X 1, 2.00 1.63 1.46 1.43 
I, 1.95 0.78 1.29 0.97 

5 x lo-” 1, 2.00 1.67 1.51 1.46 
1, 1.95 0.6 1 0.84 1.32 
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0.000 

6.000 6.000 6.000 

6.000 
1 r 

FIG. 1. (a) Contours of $ at values of - &, 0, and $, for a 64 x 128 grid. The computation has been carried out on a 32 x 128 grid, with forced 
symmetry. (b) As Fig. la, but for a 192 x 384 grid. (c) Grid refinement sequence at time 6. We have h-’ = 32,48,64,96, 128, and 192, from left to right, 
top to bottom. 
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a b 

FIG. 2, (a) Contours of $ at values of - & 0, and & for the computations described in Table I at time 6. The viscosity fi has values 0, 5 x 10m4, 
1 x lo-3,5 x 10-3, and increases from left to right. (b) As Fig. 2a, but now the density is plotted. Contours are 0.1 apart. 

E,?/‘= 0(/r*). For short time, the error decreases as h is 
relined. However, for larger times T > 4, the error increases 
as the mesh is relined. In Tables I, we show these results for 
the inviscid (p = 0) case. 

Because the problem is physically unstable, our solution 
does not converge under grid refinement. To obtain 
a converged solution, we add physical viscosity. The 
Navier-Stokes equations without heat conduction are used. 
Following Stokes hypothesis, the second coefficient of 
viscosity A = - 3~. The first coefficient of viscosity p is 
chosen to be constant. The spatial discretization is based on 
the usual central differences. The timestep is chosen as 

a 

!i 
6.000 

(6.2) 

J 

where 

i1 =max(lul+ lu) +c&)/h, 

~ 14p 1 (6.3) 

‘*=?iTImin(p)’ 

Here the maximum and minimum are computed over the 
grid. We use CFL, = 3 and CFL, = 1. 

The addition of physical viscosity stablizes the problem. 
We performed runs with grid sizes of 32,48,64,96, 128, and 
192 mesh points across the horizontal width, with twice as 
many points in the vertical direction. The results indicate 
that convergence improves with the larger values of 
viscosity p. Table Ia shows the relative errors Eih in $, com- 
puted from a grid refinement sequence with h-i equal to 32, 

b 
in 
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d 

In 
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/ 

1.6 1.8 2.0 

FIG. 3. (a) Contours of the color function at -0.5,0.0, and 0.5 for a 64 x 128 grid. The computation has been carried out on a 32 x 128 grid, with 
forced symmetry. (b) Vertical cross section halfway Fig. 3a at time 6. Shown are p (drawn line), $ (dashed), and the color function (dots). Also shown 
are runs for non-conservative differencing: rj = chain-dot, color function = chain-dash. 
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FIG. 4. (a) Contours of $ at values of - &, 0, and &, for a 32 x 256 grid, in the helium-air case. (b) Same parameters and initialization with non- 
conservative differencing: @ = chain-dot, color function = chain-dash. (c) As Fig. 4a, but now $J has been initialized as - 1 and + I, representing a color 
function. Contours are at -0.5,0.0, and 0.5. (d) As Fig. 4a, but using the concentration Y to determine the effective value of y. Contours are drawn at 
0.25,0.50, and 0.75. (e) The (passive) function $ at values - A, 0, and & for the same computation as in Fig. 4d. 
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FIG. &Continued 

48,64,96, 128, and 192. The number of points in the vertical 
direction is twice that amount. Once again, symmetry is 
enforced so that only half as many points are used in the 
horizontal direction, producing a symmetric portrait. 

Table Ib shows the order of accuracy p, estimated by 
a weighted least-squares lit to log Ey($) = b, + p log h, 
using he2 as weight. The grids used have 64, 96, 128, 192, 
256, and 384 points in the vertical direction and half that 
number in the horizontal direction (actually $, with the 
forced symmetry). This provides four data points for 
each least-squares fit. It is clear that without viscosity, the 
error increases under grid refinement. In the viscous case, 
convergence improves with larger values of the viscosity p. 

Figure 2a shows II/ at time 6, for various choices of p; 
Fig. 2b shows the density p for the same parameters. Since 
there is no feedback mechanism from the front to the fluid, 
the density of the fluid is a good indicator of the front posi- 
tion. Comparison of the two figures reveals the cosmetic 
character of +. 

The above calculations consider a conservative differ- 
encing of II/, initialized as the signed distance to the initial 
front, as given in Eq. (2.2). We now consider alternatives to 
this approach. To begin, other researchers have tracked 
fronts by following the evolution of a “color” function, 
which is - 1 on one side of the front and + 1 on the 
other. A sophisticated variant of this idea using a version 

of SLIC to gain subcell resolution was employed in [13] 
to performed detailed calculations and comparison with 
experiment of a shock wave hitting a gas interface. We may 
incorporate a color function into our code by initializing 
II/ to f 1. Figure 3a displays the result of a computation 
identical to the one in Fig. la, but using the color function 
instead of $. Comparison shows that the color function 
suggests a faster evolution of the instability than II/. This is 
highlighted in Fig. 3b, which shows part of a vertical section 
through the middle of Fig. 3a. 

Next, we consider non-conservative differencing, as dis- 
cussed in Section 1II.A. Here, the standard four-component 
hyperbolic system is solved, and those velocities are then 
used in a second-order-accurate upwind fashion to advect $ 
using Eq. (3.7), as described in the text. In Fig. 3b, we com- 
pare the results of conservative and non-conservative dif- 
ferencing of both the initialized distance function for II/ and 
the color function. Our results here seem to indicate that the 
non-conservative differencing of $ using the level set initial 
distance function is most desirable (see the Appendix). 

The motion of the front becomes significantly more com- 
plicated when we allow feedback between the front location 
and the fluid mechanics. Consider an air-helium boundary. 
Here, the bottom gas is air with yb = 1.40 (air), and the top 
gas is helium with yr = 1.63 (He). As the initial condition we 
again use the linearized solution. Using the molecular 
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a 

FIG. 5. (a) Kelvin-Helmholtz instability. Shown are contours of the 
(passive) function $ at values - 4, 0, and &. The grid has 128 x 256 points. 
(b) Grid refinement sequence at time 6, for h-’ = 32,48,64,96, and 128. 
(c) Zero contours of IJG for the computations described in Table II at time 
6. The viscosity p has values 0, 1 x 10m4, 5 x 10m4, 1 x lo-‘, 5 x lo-’ and 
increases from left to right. 

weights pb = 29.0 and p, = 4.0, we set cb = 1 and ph = 1 and 
find a density ratio by assuming constant temperature and 
pressure across the interface. This implies that the density 
ratio D = p,/p, = pb/p, and that cs = ci(y,Iyh) D. 

In Fig. 4a, we model this problem using conservative 
differencing of the level set/gas dynamic live-component 
hyperbolic system and the original distance function $ 
initialization. Calculations are performed on a 32 x 256 grid, 
again with the forced symmetry in the horizontal direction 
requiring half as many horizontal grid points. The small 
initial bubble grows upwards into a long plume. We show 
contours of $ at - 8, 0, A. In Fig. 4b, we perform the same 
calculation using non-conservative differencing for $. We 
believe this to be the more accurate calculation, since we do 
not decode $ using a discontinuous density. For com- 
parison, in Fig. 4c we show results using $ initialized as a 
piecewise constant color function, namely - 1 on one side 
and + 1 on the other side of the interface. Finally, the results 
of a different computation with the effective adiabatic expo- 
nent based on the concentration Y, as in [35], is shown in 
Fig. 4d. We have included II/ in this computation as well, as 
a passive scalar. Contours of $ are presented in Fig. 4e. 

Computations based on the concentration Y model dif- 

0.000 2.w 

FIG. 6. Kelvin-Helmholtz instability for air (above the interface) and 
helium (below the interface), on a 128 x 256 grid. 
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ferent physics. Still, the plot of the passive II/ corresponds and temperature abvove and below the interface, with zero 
fairly closely to the one in Fig. 4a. A comparison between vertical velocity. The initial shape is a sine perturbation. 
Figs. 4c and 4d shows that it is not so easy to determine the Above the interface, the gas moves towards the left with 
position of the (smeared) front from the concentration. This velocity 24 = - 24,; below the interface, the horizontal 
smearing might be considerably reduced with the help of velocity is u = ZQ,. For the air-air case, we set the density and 
artificial compression as described in [64]. Even better the sound speed to 1 everywhere. Again we have periodic 
would be a two-dimensional version of sub-cell resolu- boundaries in the horizontal direction and walls at the 
tion [25]. bottom and top. Gravity is not included. 

B. Kelvin-Helmholtz Instability 

Next, we perform calculations of the Kelvin-Helmholtz 
instability. As initial conditions, we take constant pressure 

TABLE IIa 

Relative Error Ep($) Measured in the I, Norm, as a Function 
of Grid size and Viscosity p at Times 0, 2, 4, and 6, for the 
Kelvin-Helmholtz Problem 

(2/t-‘,&’ Time p=O 1x10m4 5x1o-.4 1x1o-3 5x10m3 

32.64 0 3.94-5 3.94-5 3.94-5 3.94-5 3.94-5 
2 6.64-3 6.47- 3 5.45-3 4.13-3 2.79-3 
4 1.28-2 1.20-2 9.06-3 8.20-3 4.44-3 
6 1.64-2 1.64-2 1.25-2 1.04-2 5.33-3 

8 1.04-2 1.21-2 1.36-2 1.14-2 5.55-3 

48,96 0 1.76-S 1.76-5 1.76-5 1.76-S 1.76-5 

2 5.64-3 5.18-3 3.71-3 2.89-3 1.57-3 
4 1.34-2 1.24-2 7.41-3 5.09-3 2.54-3 
6 1.77-2 1.69-2 1.19-2 8.07-3 3.20-3 

8 1.86-2 1.62-2 9.86-3 9.27-3 3.42-3 

64,128 0 9.93-6 9.93-6 9.93-6 9.93-6 9.93-6 

2 5.11-3 4.33-3 2.68-3 1.95-3 1.02-3 

4 1.29-2 1.13-2 6.16-3 3.69-3 1.69-3 
6 1.89-2 1.74-2 1.03-2 6.48-3 2.19-3 

8 1.85-2 1.82-2 8.61-3 8.06-3 2.39-3 

TABLE IIb 

In Fig. 5a, we show the evolution of an initial perturba- 
tion with amplitude a = 0.1 and u. = 0.25. We use a 
128 x 256 grid. We study an air-air interaction, so that the 
level function $ is passively advected. We plot values of $ at 
- A, 0, 8. The results show the rollup of a vortex structure 
as it progresses through several turns. The small oscillations 
in the shape seem to indicate, once again, that we will not 
obtain a converged solution because of the physical 
instability of the underlying problem. We check this by 
analyzing the computed solution at time t = 6 for various 
values of h. In Fig. 5b, we show the results of a calculation 
on a 32 x 32,64 x 64,96 x 96, and 128 x 128 grid. The refine- 
ment in mesh size at fixed time suggests that the results are 
not stable. 

Next, we add physical viscosity to the system. In 
Tables IIa and IIb, we show the error E:h(ll/) measured in 
the I, norm as a function of the grid size and viscosity p at 
various times. The introduction of physical viscosity 
stablizes the problem. In Fig. 5c, we show zero contours of 
$attimet=6,withviscosity~=0,10-4,10-3,0,5x10~3 
going from left to right. As expected, the introduction of 
physical viscosity slows the rollup. 

Order of Accuracy, Estimated from the Relative Error in $ 
Measured in the I, and I, Norms, as a Funcion of the Viscosity h 
at Various Times, for the Kelvin-Helmholtz Instability 

Figure 6a shows the evolution for the air-helium case. 
The gas below the interface is helium. The initial conditions 
are ch = 1, pb = 1, D = P/,IP~ = P~JP,> c: = @Y,~Y,, 
u = + uo, v = 0. This corresponds to constant initial pressure - 
and temperature. We let u. = 0.5. The initial sine perturba- 
tion has an amplitude a = 0.1. The rollup can no longer be 
resolved after a time between 4 and 5. 

DISCUSSION 
P Norm t=o t=2 r=4 r=6 r=8 

0 1, 1.99 0.36 0.04 -0.21 - 0.48 
1, 1.31 -0.19 -0.58 - 1.02 -1.11 

1 x 1om4 I, 1.99 0.60 0.18 -0.08 -0.51 
1, 1.31 0.02 -0.51 -0.90 -1.33 

5x10m4 I, 1.99 1.07 0.60 0.36 0.58 
I li 1.13 0.81 0.46 - 0.07 0.33 

1 x 10 ’ I, 1.99 1.31 1.14 0.72 0.49 

17 1.13 1.24 0.92 0.29 0.18 

5x10-3 I, 1.99 1.47 1.41 1.30 1.23 
I I 1.31 1.00 1.60 1.00 0.82 

In this paper, we have discussed the coupling of the 
level set formulation of interface motion to the equations 
of compressible gas dynamics. We have considered two 
approaches. In one approach, the level set equation is posed 
in non-conservative form and coupled to the four-compo- 
nent system. Alternatively, we have shown that a conser- 
vative version of the level set function $ can be directly 
incorporated as a five-component system of hyperbolic 
conservation laws using standard shock technology. In 
both conservative and non-conservative settings, we have 
examined the distance function initialization of the level set 
function $ and a degenerate initialization using the color 
function. 
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The efficiency of these various techniques depends on the 
particular problem under study. In the Rayleigh-Taylor 
problem we considered, the normal velocity varies con- 
tinuously across the interface, unlike the density p, which 
undergoes a jump. In this case, the non-conservative 
formulation for $ uses a smooth u, and our results indicate 
that this approach is preferable to direct incorporation of $ 
into the conservative system because of the discontinuity 
in pll/. It seems reasonable to expect that for problems 
in which u jumps across the interface, the conservative 
approach will be preferable. 

In the problems considered here, the front velocity does 
not depend on the geometry of the interface. All that is 
needed is a rough location of the front to determine the 
selected region for the gas constant. Thus, the ability of 
the Hamilton-Jacobi level set formulation to accurately 
calculate curvature and normal direction is untapped in this 
simple calculation. For such simple problems, the color 
function is an adequate initialization and leads to only 
slightly worse performance; however, we point that it is no 
cheaper than our original level set approach. Furthermore, 
in more sophisticated problems, see, for example, [62], the 
color function idea is insufficient and the full capabilities of 
the level set approach are utilized. 

Finally, we have computed the solution to two complex 
physical phenomena. To what degree are these solutions 
accurate? First, we point out that in the zero viscosity limit, 
both of the problems are physically unstable. Our calcula- 
tions in this case do not converge with respect to mesh 
refinement. We believe the following is a plausible scenario. 
Our schemes introduce artificial viscosity which decreases 
with decreasing mesh size. For a coarse enough mesh, the 
numerical viscosity stabilizes instabilities that occur in 
the zero viscosity limit, and the solution is smooth. This 
can be seen in the calculations with coarse grids given in 
Fig. lc. As the mesh size is refined, and the artificial viscosity 
lessens, small physical instabilities are not suppressed 
and instead grow, as seen in the finer grid calculations of 
Fig. lc. 

In order to justify this hypothesis, we should be able to 
demonstrate that, given some amount of physical viscosity, 
we can compute on a line enough grid so that the physical 
viscosity dominates the numerical viscosity or the results 
are unchanged with respect to further grid refinement. This 
is the experiment indicated in Tables I and II. On the basis 
of this, we believe that our technique is capturing a 
reasonable portrait of the solution in the viscous cases and 
reflects the physical instability of the problem in the zero 
viscous limit case, Of course, the particular unstable solu- 
tion shown in the case p =0 means little; only the gross 
features are of significance. In future work, we hope to use 
the notion of subcell resolution [25] together with the level 
set formulation to account more accurately for the small 
scale geometry of the front. 

APPENDIX: COLOR VERSUS SMOOTH q~ 

Consider the one-dimensional motion of a contact dis- 
continuity. Let its speed be z+,. Then our system reduces to 

A first-order discretization of this system introduces 
numerical viscosity, which can be modeled by the 
equivalent equation 

(AZ) 

Transforming to moving coordinates x’ = x - ut,, t’ = t. 
produces the heat equation 

w, = EW xx f 

where the primes have been dropped. The solution is 

w(x, t,q K(x, Y) wb, 0) &, JL- 

where the kernel 

For initial data 

w(x, O)= wL 
if x<O 

wR if x>O 

the solution is 

w(x, t, = wL + (w, - WL) St-% t), 

S(x,t,=i[l+erf(*)]. 

(A3) 

(A4) 

(AS) 

(‘46) 

(A7) 

Let the color function be denoted by tic, and the smooth 
version by $“. Their initial data are 

*c‘= -;1 
{ > 

x-co 
x>o (A81 

and 

V(x, 0) = 4 (A9) 

respectively. The initial density distribution is p(x, 0) = pL 
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for negative and p(x, 0) = pR for positive x. The solutions 
are 

lp(x, f) = -PL + (PR + PJ S(X? f) 

PL+(PR-PL)G, t) 

and 

$s(x, t)=x+ 
(PC PA 

PL + (PR - PA w? t) 

x(z)lf2enp( -$. 

At x=0, we find 

Let A = (pR - pL)/(pR + pL). Then the point where 2. 

ti’(x. 

0 

0 

d 

0 
. 

I 

t) = 0 is, for small A, 

X0 - C--AJZ, 

(AlO) 

(All) 

(A121 

(Al31 

(A141 

FIG. 7. Propagation of two contact discontinuities on a periodic grid. 
The velocity u0 = 0.5, the initial density is 1 .O or 0.2. Shown in the result at 
time 2, using second-order ENO/ROE. In the absence of numerical 
viscosity, the results would be identical to the initial data. The jumps in 
density (drawn line) occur at x = 0 and x = 0.5. The dashed line represents 
the function $S(x.r), initialized with -sin(2nx), whereas the dotted line 
displays the color function $c(x,r), initialized with - 1 if p = 1 .O and + 1 if 
p = 0.2. Also shown are the cases with non-conservative differencing. 

whereas for the initially smooth I,!I~@~‘) we find 

x;zAt:IEt/7Z. (Al51 

Both are wrong; we should have x0 = 0. The smooth 
function $S(r,t’ is better than the color function $‘(*,‘) in 
monitoring the position of the front, but only by a factor 
217~ = 0.64. 

Figure 7 illustrates what happens for the second-order 
ENO/ROE scheme. Two contacts are moving on a one- 
dimensional periodic grid. The density and color function 
are smeared, due to numerical viscosity. Although the 
numerical viscosity is smaller than for the first-order 
scheme, the zero-crossings of t/~” and $” appear to display 
the effect described above. Non-conservative differencing 
for both II/” and $” are also shown. The non-conservative 
scheme for $” seems to be the best choice. 
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